Corneal Viscoelastic Properties from Finite-Element Analysis of In Vivo Air-Puff Deformation

نویسندگان

  • Sabine Kling
  • Nandor Bekesi
  • Carlos Dorronsoro
  • Daniel Pascual
  • Susana Marcos
چکیده

Biomechanical properties are an excellent health marker of biological tissues, however they are challenging to be measured in-vivo. Non-invasive approaches to assess tissue biomechanics have been suggested, but there is a clear need for more accurate techniques for diagnosis, surgical guidance and treatment evaluation. Recently air-puff systems have been developed to study the dynamic tissue response, nevertheless the experimental geometrical observations lack from an analysis that addresses specifically the inherent dynamic properties. In this study a viscoelastic finite element model was built that predicts the experimental corneal deformation response to an air-puff for different conditions. A sensitivity analysis reveals significant contributions to corneal deformation of intraocular pressure and corneal thickness, besides corneal biomechanical properties. The results show the capability of dynamic imaging to reveal inherent biomechanical properties in vivo. Estimates of corneal biomechanical parameters will contribute to the basic understanding of corneal structure, shape and integrity and increase the predictability of corneal surgery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas

OBJECTIVE To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. METHODS Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraoc...

متن کامل

Contributing factors to corneal deformation in air puff measurements.

PURPOSE Air puff systems have been presented recently to measure corneal biomechanical properties in vivo. In our study we tested the influence of several factors on corneal deformation to an air puff: IOP, corneal rigidity, dehydration, presence of sclera, and in vivo versus in vitro conditions. METHODS We used 14 freshly enucleated porcine eyes and five human donor eyes for in vitro experim...

متن کامل

Air puff induced corneal vibrations: theoretical simulations and clinical observations.

PURPOSE To investigate air puff induced corneal vibrations and their relationship to the intraocular pressure (IOP), viscoelasticity, mass, and elasticity of the cornea based on theoretical simulations and preliminary clinical observations. METHODS To simulate the corneal movement during air puff deformation, a kinematic viscoelastic corneal model was developed involving the factors of cornea...

متن کامل

Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas

A new technique is presented for the non-invasive imaging of the dynamic response of the cornea to an air puff inducing a deformation. A spectral OCT instrument combined with an air tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal evolution of the corneal apex. The ...

متن کامل

Dynamic response determination of viscoelastic annular plates using FSDT – perturbation approach

In this paper, the transient response of a viscoelastic annular plate which has time-dependent properties is determined mathematically under dynamic transverse load. The axisymmetric conditions are considered in the problem. The viscoelastic properties obey the standard linear solid model in shear and the bulk behavior in elastic. The equations of motion are extracted using Hamilton’s principle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014